
CLUSTERS 2.0 V1.0

Grant Agreement Number: 723265

Project acronym: Clusters 2.0

Project full title: Clusters 2.0 - Open network of hyper connected logistics clusters

towards Physical Internet

D.3.2

CNI API Description

Due delivery date: 07/02/2018

Actual delivery date: 07/02/2018

Organization name of lead participant for this deliverable: Nallian

Project funded by the European Union’s Horizon 2020 Research and Innovation Programme (2014 – 2020)

Project co-funded by the European Commission within Horizon 2020

Dissemination level

PU Public x

PP Restricted to other programme participants

RE Restricted to a group specified by the consortium

CO Confidential, only for members of the consortium

Ref. Ares(2018)726273 - 07/02/2018

CLUSTERS 2.0 2 V1.0

Document Control Sheet

Deliverable number: D3.2
Deliverable responsible: Nallian
Work package: WP3
Editor: Ivo Fremau

Author(s) – in alphabetical order
Name Organisation E-mail
Eric Cauchi Seability SEA@SEAbility.eu
Frans Cruijssen Argusi f.cruijssen@argusi.org
Ivo Fremau Nallian Ivo.fremau@nallian.com
Marcel Huschebeck PTV Marcel.Huschebeck@ptvgroup.com
Paul Delbar Nallian Paul.delbar@nallian.com
Wout Vanduffel City Depot wout.vanduffel@citydepot.be

Document Revision History
Version Date Modifications Introduced
 Modification Reason Modified by

v0.1 02/09/2017 Initial start Nallian
v0.1.1 01/10/2017 Peer review Seability
v0.1.2 15/10/2017 Context description Nallian
v0.2 16/10/2017 Figure and table update Nallian
v0.3 21/10/2017 Chapters 3, 4 and 5 Nallian
v0.3.1 30/10/2017 Content extension request PTV
v0.3.2 16/11/2017 Extra content + figures Nallian
v0.3.3 03/12/2017 Peer review Seability
v0.4 15/12/2017 Chapter 2: extra scoping content Nallian
v0.5 04/01/2018 Overall updated version Nallian
v0.5.1 16/01/2018 Extra input on chapters 2, 3, 4 and 5 PTV
v0.5.2 18/01/2018 Extra input on chapters 2, 4 and 5 Citydepot
v0.6 23/01/2018 Final version for peer review Nallian
v1.0 30/01/2018 Final version Nallian

Abstract
WP3 aims to establish logistics clusters integration into a high performing synchromodal
transportation network on a EU scale. WP3 addresses the shift towards low emission
transport modes and consolidated freight management between logistics clusters
following a demand driven approach. One of the ways to achieve this is to develop added
value services of enhanced collaboration across logistics clusters. These value added
services will create insights and applications that will lead to efficient cargo pooling. This
deliverable focuses on the way the value added service providers will interface with the
platform through API calls.

CLUSTERS 2.0 3 V1.0

Legal Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the

information is fit for any particular purpose. The above referenced consortium members shall have no

liability for damages of any kind including without limitation direct, special, indirect, or consequential

damages that may result from the use of these materials subject to any liability which is mandatory

due to applicable law. © 2017 by Clusters 2.0 Consortium.

Abbreviations and Acronyms

Acronym Definition

API Application Program Interface
APP Application
CNI Clusters Network Integration
JSON JavaScript Object Notation
LSP Logistic Service Provider
OAuth2 Authorization framework that

enables applications to obtain
limited access to user accounts

VAS Value Added Services
WP Work Package

CLUSTERS 2.0 4 V1.0

Table of Contents

Executive Summary .. 6

1. Introduction .. 7

1.1 Purpose of Document .. 7

1.2 Why is there a need for CargoStream? ... 7

1.3 What is CargoStream? ... 7

1.4 How does CargoStream work? .. 8

2. Scope ... 9

2.1 General scope .. 9

2.2 Data scope ... 9

2.3 Functional scope .. 10

2.4 Architectural view ... 10

2.5 Interfacing and access scope .. 12

2.6 Current situation and future development paths .. 12

3. Data model ... 13

3.1 Data update process .. 13

3.2 Data input list improvement process .. 13

4. Retrieving data ... 14

4.1 Simple queries using GET /data .. 14

4.2 Complex queries using a Query object .. 14

5. Request parameters ... 15

5.1 Data layer ... 15

5.2 Range criteria ... 15

5.2.1 Temporal criteria.. 15

5.2.2 Location and geo criteria ... 15

5.2.3 General criteria .. 16

5.3 Aggregation level ... 17

5.3.1 Aggregation parameters (GROUP BY) ... 17

5.3.2 Filter criteria (HAVING) ... 17

6. Response format .. 18

7. Conclusion and outlook .. 18

CLUSTERS 2.0 5 V1.0

List of Figures

Figure 1 – CargoStream Cloud: type of actors………………………………………………………………………………………………..……7

Figure 2 – CargoStream: typical business flow for a shipper………………………………………………………………..………………8

Figure 3 – CargoStream architecture for data input and retrieval…………………………………………………….……………….10

Figure 4 – CargoStream architecture for VAS App interfacing…………………………………….…………………..…………………11

Figure 5 – CargoStream architecture for extended VAS App interfacing………………………………..………………………....11

CLUSTERS 2.0 6 V1.0

Executive Summary

The Clusters 2.0 CNI platform creation and management task will develop the CargoStream
platform in order to enable the optimized network design based on

i) the Clusters aggregated transport demand data and
ii) the available services,

to provide bundling and new services recommendations.

The CargoStream platform will provide an extensive database of historical cargo movements
for various shippers. In order to find collaboration opportunities, it is necessary to retrieve
some of this information in an aggregated fashion.

After reviewing the functional requirements with all actors, we define in this document the
API needed to connect Value Added Service (VAS) providers in order that they are able to
get the necessary platform data and to deliver insights back to the platform. Targeted
insights are

i) optimized network design,
ii) cargo pooling,
iii) imbalanced lane optimization between different European logistic corridors and
iv) backhaul opportunity detection.

The VAS providers will deliver their insights via Apps on the platform. The different VAS
possibilities are detailed in deliverables D3.7 and D3.8. This deliverable describes the API
as needed by the VAS providers.

CLUSTERS 2.0 7 V1.0

1. Introduction

1.1 Purpose of Document
This document describes the high-level requirements of the API that will allow user
interfaces and VAS providers to retrieve this data.
The API is meant for VAS providers, but also for other members such as Logistic Service
Providers (LSP), terminals and hubs. Acting in the role of VAS they can get API access.
Before giving details on the technical scope of the API it is crucial to explain the overall
benefit of CargoStream: Why do we need it, what is it and how does it work?

1.2 Why is there a need for CargoStream?
It is our common responsibility to drive the sustainability of our supply chains, while we also
have to improve service, inventory and cost levels. On top, congestion and truck driver
shortages are very important upcoming challenges that will impact the reliability of the
transportation system. Horizontal supply chain collaboration between all stakeholders
provides an answer to the challenges above, as it enables either an optimization of road
transportation through round trips and empty mile reduction or a modal shift, moving
transportation from road to rail or inland waterways. Currently there is not enough scale
however to industrialize horizontal supply chain collaboration. A challenge for which
CargoStream provides the solution.

Figure 1 – CargoStream Cloud: type of actors

1.3 What is CargoStream?
CargoStream is an independent Pan-European platform that creates scale among shippers
to drive horizontal supply chain collaboration through bundling their transportation needs
with other shippers. With CargoStream we support the vision of the EU Commission to drive
more sustainability in transportation.
CargoStream is an interconnected, neutral and open network on which shippers, intermodal
terminals, rail & barge operators, logistic service providers, trustees and optimizers
collaborate by synchronizing supply chain requirements with the right mix of transport modes
(see figure 1)

CLUSTERS 2.0 8 V1.0

1.4 How does CargoStream work?

Shippers communicate their regular transportation needs to the CargoStream platform. The
CargoStream platform anonymizes and aggregates the needs of multiple shippers, and
makes these data available to VAS, LSP’s and terminals or hubs, who analyse, optimise,
and generate collaborative proposals that benefit the community. An example of a typical
business flow from the point of view of a shipper is given in Figure 2.

Figure 2 – CargoStream: typical business flow for a shipper

The CargoStream platform contains a growing set of Apps which offer additional
functionalities for the community. Think about Apps showing the potential efficiencies on
your own lanes and on collaborative round trips, or Apps showing the availability of free slots
on intermodal lanes, or even the creation of new lanes.

CLUSTERS 2.0 9 V1.0

2. Scope

2.1 General scope
In the context of the Clusters 2.0 project, CargoStream will enable independent third-party
application providers (called VAS providers) to connect their insights App-based to the data
platform.
There are 2 main reasons why there is a need to do so:

i) VAS Providers often have the knowledge and the application to generate
intelligent transport optimizations but lack the ability to have access to
European shippers’ demand data. Often their data scope is limited to their
own clientele. Via CargoStream they can access a much broader data set of
European companies.

ii) Shippers seek for the best insights, generating optimizations for their
transport requirements. However, for every new application from a third-party
company, they have to reconnect their data with that VAS provider, which is
each time a cumbersome process. Often lack of available ICT time is a show
stopper at shippers’ side to continue the effort to work with the new
application.

As CargoStream acts as a neutral platform, not owned by a shipper nor a logistic transport
provider, both shippers and VAS providers feel confident to join the platform. Shippers
benefit from a many-2-many (M2M) connection via one single data integration effort and
avoid a lock-in situation. VAS providers can leverage their knowledge without investment in
time consuming one-on-one shipper contacts.

The scope of this document is to describe the API needed to connect Value Added Service
providers in order that they are able to get the necessary platform data and that they can
deliver insights back to the platform. The insights from the VAS providers could be optimized
network design, cargo pooling, imbalanced lane optimization between different European
logistic corridors and backhaul opportunity detection. Deliverables D3.7 and D3.8 will give
detailed examples of such insights. The VAS providers will deliver their insights via Apps on
the platform.

2.2 Data scope
Currently, the scope of the data used will be

• historical transport instructions

but the scope of the solution will need to be extendable in the future, and could include
• provided by shippers (not LSP or 4PL parties)
• real-time or future/forecasted transport instructions
• available capacity on specific lanes
• patterns of capability (i.e. for multimodal/rail offerings)

CLUSTERS 2.0 10 V1.0

2.3 Functional scope
Initial scope will include

• the ability to search the database to identify possible opportunities (manual search)
• support for optimizers (i.e. using an adapter to retrieve the data needed and to inject

the resulting opportunities)

In the future, we will want to add things like

• providing saved searches
o ability to re-run a saved search when new data comes in
o automatically run when new data comes in and generate notifications

• added data layers for LSP capacity and capability
• additional search possibilities (beyond perimeter or location aggregation level)

2.4 Architectural view
The overall architecture of the data input and interfacing with the CargoStream platform is
explained in figures 3 to 5.

Figure 3 – CargoStream architecture for data input and retrieval

As shown in figure 3, the main channel for data input is an import app allowing shippers to
upload historical transport instructions. This app will also support the follow-up of the
processing of the data provided.

Central to the architecture is the availability of the QUERY API, which is used to retrieve all
cargo movement data. A first app to use this API is the Explorer app, which allows a user to
search the database based on geographical (location, proximity …), temporal (time range
and bucketization) and other properties (type of transport …) and visually represent the
results.

CLUSTERS 2.0 11 V1.0

The API will have the capability to report on multiple layers of data matching the query
specifications. Minimally, this will include the historical transport instructions (aggregated
as requested) and existing collaboration opportunities, suggested by either a manual
creation (using the Explorer) or generated by a VAS App.

Basic opportunities can be created by a shipper using the Explorer, but this would be more
of an exception situation: the bulk of the opportunities will be detected and created by VAS
Apps.

Figure 4 – CargoStream architecture for VAS App interfacing

A VAS App (see figure 4) will normally use the same query API to retrieve an aggregated data set.
However, we anticipate that an extended architecture may be required to provide additional
integration options, for example for optimizers which work in a more offline mode. In this case, figure
5 would be a more accurate representation of the architecture used.

Figure 5 – CargoStream architecture for extended VAS App interfacing

CLUSTERS 2.0 12 V1.0

2.5 Interfacing and access scope
The integration between the VAS App and the platform will be based on OpenID/OAuth2,
requiring the VAS to use an access token when calling the API. In an initial step, the VAS
App needs to request and receive a client ID/client secret from the platform in order to be
able to identify itself as an accepted client application. The client ID is required for
authentication.

An access token is received as result of an authentication request. For this, the VAS App
will need authenticate the user requesting the data from the platform as the OAuth2 identity.
This is usually done by an OpenID redirect request to the platform login page, where all
parties providing information are registered. Alternately, a machine-to-machine
authentication flow can be used, which does not require user redirection.

As a result of an authentication request, the platform will issue an access token which can
then be used to call the API.

2.6 Current situation and future development paths
Today, end 2017, and independently from Clusters 2.0, CargoStream has 2 applications
from third party companies, testing the business flow and investigating how to connect to the
platform. Next to those existing applications, and within the scope of the Clusters 2.0 project,
Argus-i and PTV are investigating how to connect their knowledge to the platform. PTV looks
how to bring operational insights to CargoStream users, Argus-i does it from a tactical point
of view. More detail on both will be given in D3.7 and D3.8 and will depend on what the
learnings from the living labs and from D5.3 will bring.

CLUSTERS 2.0 13 V1.0

3. Data model
CargoStream ingests historical transport instructions and converts them into cargo
movements:

• it isolates the origin and destination locations and geocodes them to enrich the
location info with coordinates and location aggregation identifiers, and prepare them
for easy searching

• it creates a lane for this shipper indicating that there are loads traveling along this
from/to pair

• it may create additional indexes and intermediate tables which facilitate searching.

All data related to a shipper is linked to that shipper. Community data is created on the fly
when retrieving it, as the definition of ‘community’ is different for every request.

The description of the data input to be uploaded to CargoStream is provided in D3.1. We will
not repeat that part here. However, it is important to foresee a methodology of continuous
updating of data and a methodology to improve the data input list.

3.1 Data update process
On an individual shipper level, data that has been uploaded to the platform must regularly be
updated to guarantee accurate optimization suggestions. The platform gives the possibility to
do so for shippers who connect via a B2B integration (EDI, XML, …), but also for shippers
who prefer manual uploads of .xls or .csv sheets. This is explained in chapter 4 of D3.1.

3.2 Data input list improvement process
Todays’ data input list is based on knowledge from the current CargoStream members and
their requirements. This is mainly knowledge from the shippers’ side. As a lot of transport
optimization knowledge is at VAS provider level, we expect that regular requests for extra
data elements will be made by them. That is why the data input list will evolve. We will make
a version overview of the data input list available for all members and we will enable existing
members to enlarge their currently uploaded data towards the latest version of the data input
list.
Ideally if a shipper wishes to use an App on CargoStream, this App will inform the shipper if
his available data set is insufficient and the App will suggest which data elements should be
uploaded extra.

CLUSTERS 2.0 14 V1.0

4. Retrieving data
Any request for cargo movement data will pass through a central API which passes the
request to one or more data sources. Any API request will need to indicate

• the data layer to retrieve (identifying the data source to query)
• the selection criteria for the query
• the aggregation level requested
• the details to return.

In both cases, the API will require an authentication by the requester, identifying the party
(for instance, the shipper) requesting the information.

4.1 Simple queries using GET /data
A first option will be to use a short-form GET request to /data using URL parameters.
Example:

GET HOST/data?starting=20170101&ending=20171231

4.2 Complex queries using a Query object
A more complex approach is to require the creation of a Query structure:

• the caller creates this by a POST /query returning a query JSON with a unique id
• updates / modifications are possible using a standard PUT /query/<id> request
• results can be retrieved using GET /query/<id>/data

Example of a Query structure returned:

{
 id: “032b4d76-2676-4db8-be9a-8ad78438ffe7”,
 requester: “b4aeab44-b73a-4849-a2f2-4821484d9cb4”,
 createdAt: “2017-09-22T14:33:21Z”,
 modifiedAt: “2017-09-22T14:49:17Z”,
 select: {
 …
 },
 groupBy: {
 …
 },
 return: {

 layers: [“cmh”]
 }
}

CLUSTERS 2.0 15 V1.0

5. Request parameters

5.1 Data layer
Initially, we will have only one data source (one data layer), but as we know this will change,
we want the architecture to reflect this immediately. The layers will be identified by providing

• a URL parameter like

layers=layer1,layer2

• a JSON request option like

{
 layers: [”layer1”, “layer2”]
}

The initial data layer will be called cmh (short for cargo movements, historical). If no layers
value is specified, we will assume cmh is intended.

Each data layer needs to specify which data will be returned and how the selection criteria
will be applied. For historical cargo movements, these will be minimally aggregated by lane
(individual cargo movements are never returned).

5.2 Range criteria

5.2.1 Temporal criteria

This selection would allow to include only movements in a specified time period, expressed
on the TransportDateTime reference value.

Field name Field type Field description / condition

starting DateTime TransportDateTime >= starting

ending DateTime TransportDateTime <= ending

These parameters would be mandatory, as there is no sensible default value.

5.2.2 Location and geo criteria

On the from and/or to locations, it is possible to select
• the value at one of the aggregation levels (city, region …) or a match pattern for it
• two- or three-digit post codes of a set of these
• locations within a certain region around a specified point

o a circle with a specified diameter in KM
o other geometric constructs (hyperboles, subplanes …)

• only lanes in the direction specified by the search, or include return loads

CLUSTERS 2.0 16 V1.0

Field name Field type Field description / condition

fromCity Text(35)

fromRegion Text(35) Should match region as identified by the response by geocoding

fromPostalCode Text(17)

fromCountryCodeISO2 Text(2)

fromRange JSON A description of a range, combining all of the parameters below

lat Decimal degrees:
DDD.DDDDD

Latitude

lon Decimal degrees:
DDD.DDDDD

Longitude

radius Decimal (10; 5,5) Radius of the search circle in km

Each of these parameters (except the range) can be an array of values, allowing for multiple
selections to be specified in one query.

The range parameters for URL use are fromRangeLat, fromRangeLon etc.

When using a Query structure, these parameters can be used as follows:

{
 select: {
 from: {
 city: “Vilvoorde”
 },
 to: {
 countryCodeISO2: “FR”
 }
 }
}

{
 select: {
 from: {
 range: {
 lat: 50.8503,
 lon: 4.3517,
 radius: 50
 }
 }
 }
}

5.2.3 General criteria

Callers need to be able to limit the selection using a number of parameters. Each of these
parameters can be an array of values, allowing for multiple selections to be specified in one
query.

Field name Field type Field description / condition

transportModeCode Codelist (4) 10 = Maritime transport
20 = Rail transport
30 = Road transport
40 = Air transport
60 = Multimodal transport
80 = Inland water transport

CLUSTERS 2.0 17 V1.0

Field name Field type Field description / condition

packagingCategory Text (3) CNT = container
BUL = Bulk (solid)
LIQ = Liquid (bulk)
PAL = Pallets
BOX = Boxes
DRM = Drum
OTH = Other

5.3 Aggregation level

5.3.1 Aggregation parameters (GROUP BY)

5.3.1.1 Shipper and community

Normally, movements will be aggregated as ‘this shipper’ versus ‘the community’. We need
to investigate how we want to handle situations where we need to show the individual
shippers, without disclosing their names, to facilitate handshakes.

5.3.1.2 Lane

If requested, the totals per party are subdivided into geo parameters (at the most in
individual lanes).

5.3.1.3 Time buckets

Bucketization (for instance by month) can be useful to provide insight into the periods where
we actually have data, and to show seasonality. Options offered for the groupBy.buckets
parameter will be

• week aggregates by year + weeknumber, e.g. 2017W48
• month aggregates by year + month, e.g. 201711
• quarter aggregates by year + quarter, e.g. 2017Q1
• (none) resulting in all data aggregated for the entire period

5.3.2 Filter criteria (HAVING)

Select only lanes with a minimum weight, volume or instruction count, like:

Field name Field type Field description / condition

grossWeightMin Decimal (18; 12,6)
Range for the aggregated gross weight of the lane

grossWeightMax Decimal (18; 12,6)

grossVolumeMin Decimal (18; 12,6)
Range for the aggregated gross volume of the lane

grossWolumeMax Decimal (18; 12,6)

movementCountMin Integer
Range for the aggregated number of movements of the lane

movementCountMax Integer

distanceMin Decimal (10; 5,5)
Range for the straight-line distance of the lane

distanceMax Decimal (10; 5,5)

CLUSTERS 2.0 18 V1.0

6. Response format
The response format will have to be defined to be very easy to parse and use in calling
applications. In general terms, the response will contain

• a request parameter section, repeating the criteria used to generate the data
• a summary section, with overall totals (number of movements, gross weight …)
• a detailed data section

o level 1 grouping by buckets
o level 2 grouping by party
o level 3 grouping by lane or geo property (city or region)
o each ‘cell’ containing info on how many parties contributed, how many records

provided data for the total (to calculate sparsity) …

This format will need to be evaluated based on specific needs by users as well.

Prototype for the detailed data section:

bucket;party;laneCount;movementCount;grossWeight;gr ossWeightPresent;grossVolume;grossVolu
mePresent;***
2017W01;self;3;22;15000;22;352;7;***
2017W01;community;17;241;423745;241;65433;114;***
…

For the first week of 2017, the requesting shipper had 22 movements in 3 lanes totaling
15000 KGM, while only 7 had a volume field specified.

*** stands for the lane details, if such aggregation is requested:

fromCity;fromRegion;fromCountry;toCity;toRegion;toC ountry;laneDistance
Vilvoorde;Brussels;BE;Roma;Roma;IT;1325.54

7. Conclusion and outlook
This API description document is a first version of how the CargoStream API towards
external applications from VAS providers could look like. In order to build the API, detailed
feedback from VAS providers is necessary and iterate testing should be organized. At this
stage, is too early for API test iterations. We will focus during M9-M18 on feedback from
dedicated VAS providers and preparation of a first version of the API.

